Special matchings and Kazhdan-Lusztig polynomials

نویسندگان

  • Francesco Brenti
  • Fabrizio Caselli
چکیده

In 1979 Kazhdan and Lusztig defined, for every Coxeter group W , a family of polynomials, indexed by pairs of elements ofW , which have become known as the Kazhdan-Lusztig polynomials of W , and which have proven to be of importance in several areas of mathematics. In this paper we show that the combinatorial concept of a special matching plays a fundamental role in the computation of these polynomials. Our results also imply, and generalize, the recent one in [12] on the combinatorial invariance of Kazhdan-Lusztig polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial invariance of Kazhdan-Lusztig polynomials on intervals starting from the identity

We show that for Bruhat intervals starting from the identity in Coxeter groups the conjecture of Lusztig and Dyer holds, that is, the R-polynomials and the Kazhdan-Lusztig polynomials defined on [e, u] only depend on the isomorphism type of [e, u]. To achieve this we use the purely poset-theoretic notion of special matching. Our approach is essentially a synthesis of the explicit formula for sp...

متن کامل

The Kazhdan-Lusztig polynomial of a matroid

We associate to every matroid M a polynomial with integer coefficients, which we call the Kazhdan-Lusztig polynomial of M , in analogy with Kazhdan-Lusztig polynomials in representation theory. We conjecture that the coefficients are always non-negative, and we prove this conjecture for representable matroids by interpreting our polynomials as intersection cohomology Poincaré polynomials. We al...

متن کامل

Brundan-kazhdan-lusztig and Super Duality Conjectures

We formulate a general super duality conjecture on connections between parabolic categories O of modules over Lie superalgebras and Lie algebras of type A, based on a Fock space formalism of their Kazhdan-Lusztig theories which was initiated by Brundan. We show that the Brundan-Kazhdan-Lusztig (BKL) polynomials for gl(m|n) in our parabolic setup can be identified with the usual parabolic Kazhda...

متن کامل

Composition Kostka functions

Macdonald defined two-parameter Kostka functions Kλμ(q, t) where λ, μ are partitions. The main purpose of this paper is to extend his definition to include all compositions as indices. Following Macdonald, we conjecture that also these more general Kostka functions are polynomials in q and t with non-negative integers as coefficients. If q = 0 then our Kostka functions are Kazhdan-Lusztig polyn...

متن کامل

Twisted Incidence Algebras and Kazhdan-Lusztig-Stanley functions

We introduce a new multiplication in the incidence algebra of a partially ordered set, and study the resulting algebra. As an application of the properties of this algebra we obtain a combinatorial formula for the Kazhdan-Lusztig-Stanley functions of a poset. As special cases this yields new combinatorial formulas for the parabolic and inverse parabolic Kazhdan-Lusztig polyno-mials, for the gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005